RERTR 2017 - 38th INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST REACTORS

NOVEMBER 12-15, 2017 EMBASSY SUITES CHICAGO DOWNTOWN MAGNIFICENT MILEHOTEL CHICAGO, IL USA

Continuing LEU Conversion Activities at the High Flux Isotope Reactor

D.G. Renfro¹, B.R. Betzler², D. Chandler¹, D.H. Cook¹, G. Ilas², P.K. Jain², G.Q. Kirk¹, D.S. Kozlowsky⁴, T.R. Muth³, D.L. Pinkston¹, E.L. Popov², and E.E. Davidson²

¹Research Reactors Division, ²Reactor and Nuclear Systems Division, ³Materials Science and Technology Division, and ⁴Performance Analysis and Quality Group Oak Ridge National Laboratory Oak Ridge, TN 37831 USA

ABSTRACT

ORNL has collaborated with the US reactor conversion program since 2005 to convert HFIR to LEU fuel. During 2017, a UMo monolithic LEU fuel design optimization study was performed using state-of-the-art neutronics codes and models and a legacy thermal-hydraulics code tailored for LEU fuel safety analysis to evaluate key performance metrics and thermal safety margins pre- and post-conversion to ensure that HFIR's world-class performance will be preserved for neutron scattering, isotope production, and materials irradiation. A state-of-the-art multi-physics model was completed to further ensure that adequate safety margins can be maintained. A short-term feasibility study of converting HFIR with a U₃Si₂ LEU dispersion fuel in a longer fuel zone was recently completed. ORNL continued to coordinate with the reactor conversion program in fuel testing, qualification, and fabrication to ensure that a converted HFIR is safe, reliable, cost-effective, and meets regulatory requirements. Plans for 2018 and beyond will be discussed and key issues will be highlighted.